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The longest increasing subsequence (LIS) problem aims to find the subsequence exhibit-

ing an increasing trend in a numeric sequence with the maximum length. In this paper,
we generalize the LIS problem to the longest wave subsequence (LWS) problem, which

encompasses two versions: LWSt and LWSr. Given a numeric sequence A of distinct
values and a target trend sequence T , the LWSt problem aims to identify the longest

subsequence of A that preserves the trend of the prefix of T . And, the LWSr problem

aims to find the longest subsequence of A within r segments, alternating increasing and
decreasing subsequences. We propose two efficient algorithms for solving the two ver-

sions of the LWS problem. For the LWSt problem, the time complexity of our algorithm

is O(n logn), where n represents the length of the given numeric sequence A. Addi-
tionally, we propose an O(rn logn)-time algorithm for solving the LWSr problem. In

both algorithms, we utilize the priority queues for the insertion, deletion, and successor

operations.

Keywords: longest increasing subsequence; longest wave subsequence; trend-preserving;
increasing/decreasing segment; priority queue.
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1. Introduction

The pattern matching problem [12, 20] has been studied extensively in stringol-

ogy. Given a text A and a pattern B, the pattern matching problem is to find all

occurrences of B in A. This problem finds applications in diverse fields such as

image processing [28, 29], database searching [7, 27], and genetic sequence analysis

[13, 15, 25]. Sometimes, the focus shifts from finding a specific pattern to identifying

trends in a sequence. For example, in the stock market, analysts may be interested

in identifying changing patterns of stock prices over a period rather than individ-

ual price points. This has led to the order-preserving pattern matching (OPPM)

problem [5, 6, 14, 16, 18, 21], which has attracted considerable attention in recent

years.

Given two numeric strings A = ⟨a1, a2, · · · , an⟩ and B = ⟨b1, b2, · · · , bn⟩, with
the same length, A and B are said to be order-preserving if the rank of each ai in A

is identical to the rank of bi. Here, the rank of ai in A means the number of elements

in A which are less than or equal to ai. For example, suppose that A = ⟨24, 31, 42,
40, 26⟩ and B = ⟨10, 18, 25, 21, 16⟩. Then, we have ranks ⟨1, 3, 5, 4, 2⟩ for both A

and B. Thus, A and B are order-preserving.

In this paper, we introduce the concept of trend-preserving, especially relevant

in time series prediction, such as forecasting the future price of a stock. A and B

are said to be trend-preserving if sign(ai − ai−1) = sign(bi − bi−1), for 2 ≤ i ≤
n = |A| = |B|. For example, A′ = ⟨28, 31, 42, 40, 26⟩ and B = ⟨10, 18, 25, 21, 16⟩ are
trend-preserving. But A and B are not order-preserving, because the ranks for A′

are ⟨2, 3, 5, 4, 1⟩ and the ranks for B are ⟨1, 3, 5, 4, 2⟩ .
While order-preserving focuses on the relative ranks of elements, trend-

preserving considers the overall trend or pattern of the sequences. For example,

in stock price prediction, it may be more important to preserve the trend of price

movements over time rather than the exact order of prices. Therefore, the trend-

preserving concept provides a more flexible criterion for certain applications com-

pared to the strict order-preserving criteria.

The longest increasing subsequence (LIS) problem has gained significant atten-

tion from researchers in the past [1, 2, 3, 8, 9, 11, 17, 23, 24, 26, 31]. Given a numeric

sequence A of length n, the LIS is the increasing subsequence of A with the max-

imum length. In 1961, Schensted [26] first defined the LIS problem, and he also

presented an O(n log n)-time algorithm based on the Young tableau. In 1977, if A

is a permutation of {1, 2, . . . , n}, Hunt and Szmanski [17] gave an O(n log log n)-

time algorithm by using the van Emde Boas tree [4]. In 2000, Bespamyatnikh and

Segal [3] contributed an O(n log log n)-time algorithm, capable of reporting all LIS

answers. In 2010, if A is a permutation of {1, 2, . . . , n} and the maximum length

of the LIS is parameterized to a value L′, Crochemore and Porat [8] showed that

the problem can be solved in O(n log logL′) time on the RAM model. In 2013,

Alam and Rahman [1] applied the divide-and-conquer approach to finding the LIS

in O(n log n) time.
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Table 1. The time complexities of the algorithms for the LIS-related problems. n: length of the

input sequence A; L′: maximum length of the answer; r: maximum number of segments in LWSr;
L: answer length; C: constrained sequence; w: window size; w′: size of the maximum antichain;

LaIS: longest almost increasing subsequence; LISW: longest increasing subsequence with sliding

windows.

Year Author(s) Time complexity Note

1961 Schensted [26] O(n log n)
LIS, binary search,
Young tableau

1977 Hunt and Szymanski [17] O(n log log n)
LIS, permutation,
van Emde Boas tree

2000 Bespamyatnikh and Segal [3] O(n log log n) all LIS answers

2009 Tseng et al. [30]
MHLIS: O(n log n) minimum height LIS,

SCLIS: O(n log(n+ |C|)) sequence constrained LIS

2010 Crochemore and Porat [8] O(n log logL′)
parameterized LIS,

permutation,
van Emde Boas tree

2013 Alam and Rahman [1] O(n log n) LIS, divide-and-conquer
2017 Kloks et al. [19] O(w′n logmin( n

w′ , L)) partially ordered set
2010 Amr Elmasry [10] O(n logL) LaIS, dynamic programming
2018 Li et al. [22] O(nw) LISW, quadruple neighbor list
2024 This paper O(n log n) the LWSt problem
2024 This paper O(rn log n) the LWSr problem

The time complexities of the previously published algorithms for the LIS-related

problems are listed in Table 1.

In this paper, we introduce the longest wave subsequence (LWS) problem, a

generalization of the LIS problem. The LWS problem here includes two versions of

problems. The first one is referred to as the LWSt problem, which finds the LWS

with a given trend. Given a numeric sequence A composed of n distinct values and

a target trend sequence T of length n, the LWSt problem is to find the longest

subsequence in A that is trend-preserving with respect to the prefix of T . When the

trend sequence T comprises only one type of sequence, such as strictly increasing,

the LWSt problem degenerates into the traditional LIS problem. For the LWSt

problem, we propose an algorithm with O(n log n) time, drawing inspiration from

algorithms designed for solving the LIS problem [24, 31].

The second variant is the LWS problem within r segments, referred to as the

LWSr problem. In various scenarios, such as analyzing stock market trends, a series

of data may exhibit distinct trend segments, alternating increasing and decreasing.

The LWSr problem aims to identify the longest subsequence within r segments in a

given sequence A, where each subsequence forming a segment is either increasing or

decreasing. It is worth noting that when r = 1, the LWSr problem also degenerates

into the traditional LIS problem. We present an O(rn log n)-time algorithm for

efficiently solving the LWSr problem.

The rest of this paper is organized as follows. Section 2 introduces the back-

ground knowledge of the LIS problem, and presents the formal definitions of the

LWSt and LWSr problems. In Section 3, we propose an algorithm for solving the

LWSt problem. In Section 4, we present the LWSr algorithm. Finally, the conclusion

and discussion are given in Section 5.
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Table 2. An example of the folklore algorithm [24, 31] for finding the LIS of A = ⟨4, 6, 1, 7, 3, 5, 8, 2⟩,
where S[x] stores the best (smallest) ending element for the current IS of length x. The LIS content
is ⟨1, 3, 5, 8⟩, with length 4.

PPPPPPPPA

S(length)
1 2 3 4

a1 = 4 4

a2 = 6 4 6

a3 = 1 1 6

a4 = 7 1 6 7

a5 = 3 1 3 7

a6 = 5 1 3 5

a7 = 8 1 3 5 8

a8 = 2 1 2 5 8

2. Preliminaries

2.1. Notations and the Longest Increasing Subsequence Problem

In this paper, we denote a sequence using an upper-case letter, such as A or T .

Given a sequence A = ⟨a1, a2, . . ., an⟩ with |A| = n, ai represents the ith element

of A; the notation i..j is the index range from index i to index j; Ai..j represents

the substring or consecutive elements of A with index range i..j. We set Ai..j = ∅
if i > j.

Given a numeric sequence A = ⟨a1, a2, . . ., an⟩, an increasing subsequence (IS)

of A is a subsequence ⟨ai1 , ai2 , . . ., aik⟩, obtained from A, where aix < aiy and

1 ≤ ix < iy ≤ n for 1 ≤ x < y ≤ k. The longest increasing subsequence (LIS)

[17, 24, 26, 31] is the IS of A with the maximum length. Note that the LIS may not

be unique. For example, suppose that A = ⟨4, 6, 1, 7, 3, 5, 8, 2⟩. Then its LIS length

is 4, with answer sequences ⟨4, 6, 7, 8⟩, or ⟨1, 3, 5, 8⟩. A decreasing subsequence

(DS) and the longest decreasing subsequence (LDS) are defined similarly.

A folklore algorithm [24, 31] can be used to solve the LIS problem with O(n log n)

time. An example of the folklore algorithm is illustrated in Table 2.

The folklore algorithm maintains an array S[·], where S[x] denotes the best

(smallest) ending element of the current IS with length x. In Table 2, each row

represents an iteration when it deals with an input element from A, in which the

underlined elements indicate the updates. Whenever it linearly scans an element ai
from A, it updates S[·] by either replacement or extension with the binary search

scheme. ai replaces the smallest element that is greater than ai in S[·] (i.e. the
successor of ai); otherwise, ai is appended to S[·] as the last element and the LIS

length is increased. The content of the LIS in this example is ⟨1, 3, 5, 8⟩, which can

be easily obtained by the backtracking technique.
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2.2. The Longest Wave Subsequence

In this subsection, we define the longest wave subsequence (LWS) problem.

Definition 1. (trend of a numeric sequence) Given a numeric sequence of distinct

values W = ⟨w1, w2, . . ., wn⟩, the trend sequence T = ⟨t1, t2, . . ., tn⟩ of W is

defined as

ti =


0, if wi−1 > wi and 2 ≤ i ≤ n;

1, if wi−1 < wi and 2 ≤ i ≤ n;

complement of t2, if i = 1.

(1)

For example, suppose that W = ⟨2, 6, 9, 8, 5⟩. Then, its trend sequence is

T = ⟨0, 1, 1, 0, 0⟩. Note that t1 is set as the complement of t2 and t1 is used only

for initialization. Here, the trend of W1..3 is increasing and W3..5 is decreasing.

Definition 2. (increasing segment, decreasing segment) Given a numeric sequence

W = ⟨w1, w2, . . ., wn⟩ of distinct values with trend sequence T = ⟨t1, t2, . . ., tn⟩, an
increasing segment W+

i..j is a substring of W such that ti+1 = ti+2 = . . . = tj = 1

and ti = tj+1 = 0, for 1 ≤ i < j ≤ n. Similarly, a decreasing segment W−
i..j is

a substring of W such that ti+1 = ti+2 = . . . = tj = 0 and ti = tj+1 = 1, for

1 ≤ i < j ≤ n. Here, tn+1, used for boundary conditions, is set as the complement

of tn.

Definition 2 specifies a segment as the consecutive elements of the same trend

with the maximal length in a sequence. This implies that a sequence can be

decomposed into alternately increasing and decreasing segments. For example,

consider a sequence W = ⟨1, 2, 4, 9, 7, 3, 5, 6, 8⟩, whose trend sequence

T = ⟨0, 1, 1, 1, 0, 0, 1, 1, 1⟩. W can be decomposed into W+
1..4, W

−
4..6 and W+

6..9. Po-

sition 4, where w4 = 9, is an overlapping element of W+
1..4 and W−

4..6. We refer to

position 4 as a turning point, serving as the ending element of the former segment

and the starting element of the latter segment. Similarly, position 6 is the turning

point of W−
4..6 and W+

6..9.

Definition 3. (turning point) Given a sequence W with trend sequence T , p is a

turning point if tp ̸= tp+1, 1 ≤ p ≤ |W | − 1. In other words, at the turning point p,

wp is the overlapping element of two neighboring segments in W .

Note that we set p = 1 as the dummy turning point of the first segment. Thus,

there are exactly r turning points if there are r segments in W . In the following, we

will discuss two versions of the LWS problem, the LWSt and the LWSr problems,

each addressing different aspects of LWS.

2.2.1. The Longest Wave Subsequence Problem with Trend

Suppose we have two numeric strings (or substrings) A = ⟨a1, a2, . . ., an⟩
and B = ⟨b1, b2, . . ., bn⟩. Let Rank(A, i) denote the number of elements in A
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that are less than or equal to ai. Similarly, Rank(B, i) represents the rank of bi
in B. A and B are said to be order-preserving [5, 6, 14, 16, 18, 21] if Rank(A, i) =

Rank(B, i), for all 1 ≤ i ≤ n. For example, suppose that A = ⟨24, 31, 42, 40, 26⟩
and B = ⟨10, 18, 25, 21, 16⟩. Then, we have Rank(A, i)i=1,2,...,n = ⟨1, 3, 5, 4, 2⟩ and
Rank(B, i)i=1,2,...,n = ⟨1, 3, 5, 4, 2⟩. Thus, A and B are order-preserving.

The following definition describes the trend-preserving relationship between two

sequences.

Definition 4. (trend-preserving) Given two numeric sequences A and B with the

same length, where the values in each sequence are distinct, A and B are said to be

trend-preserving if A and B have the same trend.

For example, A = ⟨28, 31, 42, 40, 26⟩ and B = ⟨10, 18, 25, 21, 16⟩ have the

same trend T = ⟨0, 1, 1, 0, 0⟩, so they are trend-preserving. However, A and B are

not order-preserving since the elements’ ranks are not all identical in corresponding

positions in A and B. It is clear that any two order-preserving sequences are always

trend-preserving. On the contrary, two trend-preserving sequences may or may not

be order-preserving.

The first variant of the LWS problem, the longest wave subsequence problem

with trend, denoted as LWSt, is defined as follows.

Definition 5. (LWSt problem) Given a numeric sequence A = ⟨a1, a2, . . ., an⟩
of distinct values and a predefined target trend sequence T = ⟨t1, t2, . . ., tn⟩, with
the same length n, where ti ∈ {0, 1} for 1 ≤ i ≤ n, and t1 ̸= t2, the longest wave

subsequence with trend (LWSt) is a longest subsequence W = ⟨w1, w2, . . ., wn′⟩
obtained from A such that wi−1 < wi if ti = 1 and wi−1 > wi if ti = 0, for

2 ≤ i ≤ n′ ≤ n.

Note that we stipulate t1 ̸= t2, as T is a predefined trend sequence and not

calculated from A. As another view of Definition 5, the LWSt problem is to find W

of maximum length such that its trend aligns with the prefix of T . For example,

suppose that A = ⟨4, 6, 1, 7, 3, 5, 8, 2⟩, and T = ⟨0, 1, 1, 0, 1, 1, 1, 1⟩. The LWSt

answer is ⟨4, 6, 7, 3, 5, 8⟩ with length 6, whose trend ⟨0, 1, 1, 0, 1, 1⟩ perfectly
matches a certain prefix of T . In other words, W and the prefix of T are trend-

preserving. In addition, when there is only one turning point in the trend sequence,

such as ⟨0, 1, 1, 1, . . .⟩, the LWSt problem simplifies to the traditional LIS problem.

2.2.2. The Longest Wave Subsequence Problem within r Segments

The longest increasing (or decreasing) subsequence problem considers a subsequence

of only a fixed trend. In some applications, it may allow several interleaving up and

down trends, or alternating peaks and valleys, in the subsequence, creating a wave-

like pattern. The second variant of the LWS problem is defined as follows.

Definition 6. (LWSr problem) Given a numeric sequence A = ⟨a1, a2, . . ., an⟩ of
distinct values and the constraint number r of segments, the problem of the longest
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Table 3. The LWSr answers of A = ⟨4, 6, 1, 7, 3, 5, 8, 2⟩ for r = 1, 2, or 3.

r LWSr answers length

1 ⟨4, 6, 7, 8⟩, ⟨1, 3, 5, 8⟩ 4

2 ⟨4, 6, 7, 3, 2⟩, ⟨4, 6, 7, 5, 2⟩, ⟨4, 6, 7, 8, 2⟩, ⟨1, 3, 5, 8, 2⟩ 5

3 ⟨4, 6, 1, 3, 5, 8⟩, ⟨4, 6, 7, 3, 5, 8⟩ 6

wave subsequence within r segments (LWSr) is to find a longest subsequence W =

⟨w1, w2, . . ., wn′⟩ obtained from A such that the number of turning points in W is

at most r.

In Definition 6, i is a turning point, i ≥ 2, if and only if (wi−1 > wi and

wi < wi+1) or (wi−1 < wi and wi > wi+1). Note that i = 1 is always considered as

the first turning point.

Without loss of generality, it is assumed that the first segment is increasing,

that is w1 < w2. Table 3 shows the LWSr examples with A = ⟨4, 6, 1, 7, 3, 5, 8,
2⟩. When r = 1, it is identical to the traditional LIS problem, and the LWSr is ⟨4,
6, 7, 8⟩ or ⟨1, 3, 5, 8⟩ with length 4. When r = 2, it allows increasing first and

then decreasing. When r = 3, it allows increasing first, then decreasing, and again

increasing.

As an important note, for a given sequence A, suppose that the LWSr answers

W and W ′ are required to contain exactly r and r′ segments, respectively. Then it

cannot be guaranteed that |W | ≤ |W ′| if r < r′. This situation is exemplified in

A = ⟨3, 4, 1, 6, 7⟩. When the LWSr is required to have exactly r = 1 segment, then

the LWSr answer is ⟨3, 4, 6, 7⟩ with length 4. When the LWSr is required to have

exactly r = 2 segments, then the LWSr answer is ⟨3, 4, 1⟩ with length 3.

3. The Algorithm for the Longest Wave Subsequence Problem

with Trend

To solve the LWSt problem, we need some notations as follows.

Definition 7. (best ending element) [24, 31] Given a sequence A, among all in-

creasing (decreasing) subsequences of A with a certain length, the best ending ele-

ment is the last element which is the minimum (maximum).

Definition 8. (solution list) Given a sequence A, for solving the LWSt problem,

each element S[x] in a solution list S[·] stores the best element at length x.

Definition 9. (successor) Given an element ai, the successor in an increasing se-

quence is the smallest element that is greater than ai, and the successor in a de-

creasing sequence is the largest element that is less than ai.

We first demonstrate our idea for solving the LWSt problem with the example

in Table 4. According to the turning point list, the first range for updating S[·]
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Table 4. An example for the LWSt algorithm with an input sequence A = ⟨4, 6, 1, 7, 3, 5, 8, 2⟩
and a trend sequence T = ⟨0, 1, 1, 0, 1, 1, 1, 1⟩, where the turning point list is P = ⟨1, 3, 4⟩. The
LWSt answer is ⟨4, 6, 7, 3, 5, 8⟩ with length 6.

T 0 1 1 0 1 1 1 1
PPPPPPPPA

S(length)
1 2 3 4 5 6 7 8

a1 = 4 4

a2 = 6 4 6

a3 = 1 1 6

a4 = 7 1 6 7

a5 = 3 1 6 7 3

a6 = 5 1 6 7 3 5

a7 = 8 1 6 7 3 5 8

a8 = 2 1 6 7 2 5 8

is S[1..3], which is increasing. When sequentially dealing with a1, a2, a3 and a4,

the action is exactly the same as the traditional LIS algorithm. After obtaining

S[3] = 7 = a4, we encounter the second turning point p2 = 3. Hence, the next range

for updating S[·] is shifted to S[3..4], which is decreasing. And S[3] = 7 is currently

the starting element of the new range.

The process of a5 = 3 is the same as the traditional LDS algorithm performed

in range S[3..4]. We again encounter the next turning point p3 = 4. Thus, the next

update range becomes S[4..8], which is increasing, and S[4] = 3 is currently the

starting element of the new range. Then, for a6, a7 and a8, we perform the the

traditional LIS algorithm on the new range. Finally, the LWSt answer is obtained

by a simple backtracking technique.

For each new element ai, we perform the following two possible actions:

(1) Replace its successor to maintain the same length, thereby obtaining a better

ending element at that length.

(2) Extend the length if its successor is ∞ for an increasing segment, or −∞ for

a decreasing segment.

Thus, the insertion position of ai in S[·] can be determined by finding the suc-

cessor of ai in the current range of S[·] with the binary search scheme. It is sufficient

to obtain the length x of LWSt by conducting an update within the current range.

We need not update ai into any previous range. This property will be proved in

Theorem 1.

Our algorithm for solving the LWSt problem is presented in Algorithm 1. The

state flag c = 1 (c = 0) indicates that the current range is increasing (decreasing).

In addition, the turning point list P is used to shift the updating range to the next

one.

Theorem 1. Suppose we are given an input sequence A and a trend sequence T



April 8, 2024 21:0 WSPC/INSTRUCTION FILE LSW240407IJFCS

Longest Wave Subsequence Problem 9

Algorithm 1. Computing the LWSt length

Input: A numeric sequence A = ⟨a1, a2, . . ., an⟩ of distinct values and a trend

sequence T = ⟨t1, t2, . . ., tn⟩, where ti ∈ {0, 1}, 1 ≤ i ≤ n, and t1 ̸= t2
Output: the LWSt length L

1: S[i]←∞, if ti = 1 and 1 ≤ i ≤ n

2: S[i]← −∞, if ti = 0 and 1 ≤ i ≤ n

3: j = 1

4: for i = 1 to n− 1 do ▷ build turning point list P = ⟨p1, p2, . . ., pr⟩
5: if ti ̸= ti+1 then ▷ turning point

6: pj ← i, j ← j + 1

7: left← p1, right← p2 ▷ range of current segment, p1 = 1

8: c← t2 ▷ state flag, c = 1 for increasing; c = 0 for decreasing

9: S[1]← a1
10: for i = 2 to n do

11: if c = 1 then ▷ increasing segment

12: find minimal x such that left ≤ x ≤ right and ai < S[x] ▷ successor

13: else ▷ decreasing segment

14: find minimal x such that left ≤ x ≤ right and ai > S[x] ▷ successor

15: S[x]← ai ▷ best ending element with LWSt length x

16: if x = right then ▷ a turning point

17: c← 1− c ▷ state changed between 0 and 1 alternately

18: left← right

19: right← next turning point in P , or n if no next turning point

20: L← maximal x for S[x] ̸= −∞ and S[x] ̸=∞ ▷ LWSt length

21: return L

with r turning points P = ⟨p1, p2, . . . , pr⟩ and pr+1 = ∞. After processing A1..i−1,

let the LWSt solution list be ⟨S1, S2, . . . , Sr′⟩, where 1 ≤ r′ ≤ r, and each Si repre-

sents the segment S[pi..pi+1]. Then, the update of Sr′ (S[pr′ ..pr′+1]) when processing

ai is sufficient to obtain the correct LWSt.

Proof. Without loss of generality, we assume that the first segment is increasing.

Let ℓ denote the length of the LWSt solution list ⟨a′1, a′2, . . . , a′ℓ⟩ after processing

A1..k−1. Let L(ai) denote the maximal length of the LWSt answer ending at ai.

We first prove the case that the process is only in the first segment, that is

ℓ < p2. When k = 2, it is trivially correct since there is only one element ⟨a1⟩ in
the LWSt solution list after A1..1 = a1 is processed.

For the hypothesis, assume that ak−1, k ≥ 2 has been processed and the LWSt

solution list ⟨a′1, a′2, . . ., a′ℓ⟩ is correctly obtained, where ℓ < p2. Now ak is to be

processed. If ak > a′ℓ, then the LWSt length can be increased by appending ak to

the answer, and the solution list becomes ⟨a′1, a′2, . . ., a′ℓ, a′ℓ+1 = ak⟩. Otherwise, ak
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will replace a′j that a′j is the smallest for a′j > ak, 1 ≤ j ≤ ℓ. Thus, it is correctly

processed in the first segment, even when ℓ+ 1 = p2 (turning point).

Next consider that two or more segments have been produced. For the hypoth-

esis, assume that ak−1, k ≥ 2, has been processed and the LWSt solution list ⟨a′1,
a′2, . . ., a

′
ℓ⟩ is correctly obtained, where ℓ ≥ p2. Without loss of generality, it is

assumed that the last segment is decreasing. Let j be the last turning point be-

fore ℓ. That is, pr′ = j and a′j is the starting element in the last segment Sr′ and

a′j > a′j+1 > · · · > a′ℓ. When ak is processed, there are two possible actions: (1)

ak is added only in the last segment; (2) ak is added in each segment. We want to

prove that after ak+1 is processed, the value of L(ak+1) for action 1 of ak is not less

than that (denoted as L′(ak+1)) for action 2. That is, L(ak+1) ≥ L′(ak+1).

Three cases are considered as follows.

Case 1: ak > a′j .

For action 1, ak will substitute a′j in segment Sr′ and ak becomes the new a′j . That

is a′j = ak and L(ak) = j. For action 2, ak will still substitute a′j , which is the last

of the increasing segment Sr′−1 and the first of the decreasing segment Sr′ . That

is L′(ak) = j. Therefore, L(ak) = L′(ak) = j. Then, the process results of ak+1 for

both actions are the same. That is, L(ak+1) = L′(ak+1).

Case 2: a′j > ak > a′j−1.

For action 1, we will find a proper position µ for ak (substitution or appendant)

in the last segment Sr′ , so L(ak) = µ > j. For action 2, ak will substitute a′j
in Sr′−1. However, a′j is also the first of Sr′ , then the substitution will reduce the

extendability of Sr′ . Thus, we should not substitute a′j by ak. Therefore, the process

result of ak+1 for action 1 is not worse than action 2. That is, L(ak+1) ≥ L′(ak+1).

Case 3: ak < a′j and ak < a′j−1.

In this case, a′j will not be replaced by ak in both Sr′−1 and Sr′ . Thus, the update

of Sr′−1 is independent to the update of Sr′ . In other words, we can find a proper

position for ak in the decreasing segment Sr′−1 and another proper position in the

increasing segment Sr′ . Then, the process results of ak+1 for both actions are same.

That is, L(ak+1) = L′(ak+1).

The situations for updating ak into S1, S2, . . ., Sr′−2 have the same results.

Thus, the theorem holds.

Theorem 2. Algorithm 1 solves the LWSt problem in O(n log n) time and O(n)

space.

Proof. Algorithm 1 only maintains the solution list S[·] with length n to record the

best ending element for each LWSt length. While processing each element ai of A,

it updates S[·] by finding the successor of ai in the current range of S[·]. This can be

accomplished by the binary search scheme, which takes O(log n) time. Therefore,

the overall time complexity is O(n log n), and the space complexity is O(n).

When the length of each segment is a constant, such as T = ⟨0, 1, 1, 0, 0, 1, 1,
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. . .⟩, the successor of ai in the current range can be found in O(1) time. Therefore,

for solving the LWSt problem with constant-length segments, our algorithm takes

only O(n) time.

4. The Algorithm for the Longest Wave Subsequence Problem

within r Segments

Without loss of generality, it is assumed that the first segment in the LWSr problem

is increasing. The LWSr problem obviously degenerates into the traditional LIS

problem when r = 1. When r = 2, the answer is divided into two parts by the

turning point. The problem can be solved by applying the traditional LIS algorithm

forward and backward, respectively, to get two parts of the answer. For the forward

part, we scan A from a1 to an and obtain a list F = ⟨f1, f2, · · · , fn⟩ of the LIS

lengths, where fi, 1 ≤ i ≤ n, denotes the LIS length of A1..i. For the backward part,

we scan A from an to a1 and obtain a list B = ⟨b1, b2, · · · , bn⟩, where bi, 1 ≤ i ≤ n,

denotes the LIS length of the reverse of Ai..n (the LDS length of Ai..n). Then, we

consider the turning point at each possible position i, and find the maximal value

of fi+ bi+1, which represents the sum of the LIS length of A1..i and the LDS length

of Ai+1..n.

In the above algorithm, we apply the LIS algorithm forward and backward,

resulting in a time complexity of O(n log n) for solving the LWSr problem within 2

segments. When r ≥ 3, the decision of the turning points becomes more complex,

making it impractical to generalize the above algorithm for r ≥ 3.

In our LWSr algorithm, we denote a 2-tuple (e, l) as the solution status, where

e denotes the best ending element and l represents its LWSr length. For example,

(7, 4) represents an LWSr of length 4 which ends at element 7.

For solving the LWSr problem, we use r priority queues for storing these 2-

tuple elements. Each queue Qj corresponds to segment j, where 1 ≤ j ≤ r. For

an increasing segment j (j is odd), Qj is a min-priority queue. For a decreasing

segment j (j is even), Qj is a max-priority queue. The 2-tuple elements are stored

in the priority queue based on their e values. In a min-priority (max-priority) queue,

the minimum (maximum) element is stored as the first one.

In a priority queue, there are two common operations, Predecessor and Succes-

sor. Predecessor(Q, x) returns the previous element of x in Q. On the other hand,

Successor(Q, x) returns the next element of x in Q.

Definition 10. For any 2-tuples (e1, l1), (e2, l2) ∈ Qj, (e1, l1) ̸= (e2, l2), we say

that (e1, l1) dominates (e2, l2) in a min-priority (max-priority) queue Qj, if e1 ≤ e2
and l1 ≥ l2 (e1 ≥ e2 and l1 ≥ l2). Any pair of 2-tuples in Qj do not dominate each

other.

Table 5 illustrates an example of our concept for solving the LWSr problem.

In the main procedure of our algorithm, when a new element ai is processed, the

following works are performed in each Qj for j = 1, 2, . . . , r.
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Table 5. An example of the LWSr algorithm within r = 3 segments for A = ⟨4, 6, 1, 7, 3, 5, 8, 2⟩.
Here, each red bold element indicates an update, and each crossed-out element means that it is
dominated and then deleted. The LWSr answer is ⟨4, 6, 7, 3, 5, 8⟩ with length 6.

length 1 2 3 4 5 6

a1 = 4

Q1 (4, 1)

Q2 (4, 1)

Q3 (4, 1)

a2 = 6

Q1 (4, 1) (6, 2)

Q2 (4, 1) (6, 2)

Q3 (4, 1) (6, 2)

a3 = 1

Q1
(4, 1) (6, 2)

(1, 1)

Q2 (6, 2) (1, 3)

Q3 (4, 1) (6, 2) (1, 3)

a4 = 7

Q1 (1, 1) (6, 2) (7, 3)

Q2
(6, 2) (1, 3)

(7, 3)

Q3 (1, 3) (7, 4)

a5 = 3

Q1
(1, 1) (6, 2) (7, 3)

(3, 2)

Q2 (7, 3) (3, 4)

Q3
(1, 3) (7, 4)

(3, 4)

a6 = 5

Q1
(1, 1) (3, 2) (7, 3)

(5, 3)

Q2
(7, 3) (3, 4)

(5, 4)

Q3 (1, 3) (3, 4) (5, 5)

a7 = 8

Q1 (1, 1) (3, 2) (5, 3) (8, 4)

Q2
(7, 3) (5, 4)

(8, 4)

Q3 (1, 3) (3, 4) (5, 5) (8, 6)

a8 = 2

Q1
(1, 1) (3, 2) (5, 3) (8, 4)

(2, 2)

Q2 (8, 4) (2, 5)

Q3
(1, 3) (3, 4) (5, 5) (8, 6)

(2, 5)

Step 1: (ej , lj)← Successor(Qj , ai). Note that Qj may be either a min-priority

or max-priority queue.

Step 2.1: If there does not exist (ej , lj), it indicates that we can append ai in

segment j to increase its length. We set the length l′j for ai to be Lj + 1, where Lj

denotes the maximum length in Qj , and Lj is set to 0 for initialization. And then

set Lj = l′j .

Step 2.2: If there exists (ej , lj), ej is replaced by ai with the same length

lj . In addition, we have to consider the length for ai obtained in Qj−1. Thus,

l′j ← max{lj , l′j−1}.
Step 3: Insert (ai, l

′
j) into Qj .

Step 4: Remove all dominated 2-tuples in Qj by iteratively applying
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Successor(Qj , ai).

For example, in Table 5, when a8 = 2 is processed, (2, 2) replaces (3, 2) in Q1;

(2, 5) is appended to Q2; (2, 5) is inserted into Q3 whose l′ is obtained from Q2.

Additionally, (3, 4) and (5, 5) in Q3 are removed, while (1, 3) is retained as (1, 3)

and (2, 5) do not dominate each other. The final answer is the maximal l of the

2-tuple element in Q3, with length 6.

Our algorithm for solving the LWSr problem is formally presented in Algorithm

2. The initialization is performed in Lines 1 through 5. In Line 4, Lj denotes the

LWSr length within j segments, obtained in Qj . Lines 6 through 17 present the

main procedure of our algorithm.

Algorithm 2. Computing the LWSr length

Input: A numeric sequence A = ⟨a1, a2, . . ., an⟩ of distinct values, and the number

r of segments

Output: The LWSr length Lr

1: Build an empty min-priority queue Qj if 1 ≤ j ≤ r and j is odd.

2: Build an empty max-priority queue Qj if 1 ≤ j ≤ r and j is even.

3: Insert (a1, 1) into Qj , for 1 ≤ j ≤ r ▷ initialization

4: Lj ← 1, for 1 ≤ j ≤ r ▷ LWSr length obtained in Qj

5: l′0 ← 0 ▷ boundary condition for latter use

6: for i = 2 to n do ▷ processing for ai
7: for j = 1 to r do

8: (ej , lj)← Successor(Qj , ai)

9: if (ej , lj) is null then ▷ append ai
10: l′j ← Lj + 1 ▷ assign length for ai
11: Lj ← l′j ▷ increase length in Qj

12: else ▷ replacement

13: l′j ← max{lj , l′j−1} ▷ max length for ai from Qj or Qj−1

14: Insert (ai, l
′
j) into Qj

15: while (ej , lj) ← Successor(Qj , ai) ̸= null and (ai, l
′
j) dominates (ej , lj)

do

16: Remove (ej , lj) from Qj ▷ remove each dominated 2-tuple

17: end while

18: return Lr

Theorem 3. Suppose that we are given an input sequence A and a constant r

representing the number of segments. Algorithm 2 gives the LWSr length in the

queue Qr.

Proof. Algorithm 2 maintains r queues ⟨Q1, Q2, . . . , Qr⟩ and updates each Qj , for

1 ≤ j ≤ r. Without loss of generality, we assume the first segment is increasing and
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Q0 is a virtual queue for boundary use. When j = 1, it is similar to the traditional

LIS problem.

When j = 2, we recognize the continuity of segments. In this case, the second

segment must be extended from the first segment. If the currently considered ele-

ment is smaller than the last element in Q1, it turns the wave to obtain a longer

LWSr with 2 segments (|Q1| < |Q2|). Otherwise, it extends the first segment and

Q2 keeps the same length as segment 1 (|Q1| = |Q2|).
When j = 3, if |Q1| < |Q2| and the currently considered element is larger than

the last element in Q2, it once again alters the wave to achieve a longer LWSr with 3

segments (|Q2| < |Q3|). Otherwise, it extends the second segment and Q3 maintains

the same length as the first 2 segments (|Q2| = |Q3|). If |Q1| = |Q2|, indicating only

one increasing segment, then |Q1| = |Q3|, where Q3 is also increasing.

When j = r, by recurrence, ⟨Q1, Q2, . . . , Qr⟩ is either extended or inherited from

⟨Q0, Q1, . . . , Qr−1⟩. Thus, the longest length within j segments is stored in Qj . And

the theorem holds.

Theorem 4. Algorithm 2 solves the LWSr problem with O(rn log n) time and

O(rn) space.

Proof. Algorithm 2 maintains r queues ⟨Q1, Q2, . . ., Qr⟩ and the size of each

queue is at most n. While processing each element of the input sequence A, it

takes O(log n) time to update each Qj , for 1 ≤ j ≤ r, by finding the successor

and performing the insertion. The removal of the dominated element in each Qj

is executed at most n times, and each domination removal requires O(log n) time.

Therefore, the overall time complexity of the algorithm is O(rn log n), and the space

complexity is O(rn).

5. Conclusion and Discussion

When we present our LWS algorithms, it is assumed that all elements of the input

sequence A are distinct. If there exist duplicate elements in A, two situations have to

be discussed. Firstly, if two identical elements are not allowed in the LWS answer, the

algorithm can still work correctly. Secondly, if two identical elements are permitted

in the LWSt answer, they may appear in either an increasing segment or a decreasing

segment. In this case, an increasing (decreasing) segment effectively becomes a non-

decreasing (non-increasing) segment to accommodate the duplicate elements. The

situation can be addressed by considering an element as the successor of another

identical element in a non-decreasing segment, as well as the successor in a non-

increasing segment.

The time complexity of our LWSr algorithm can be further improved by using the

van Emde Boas (vEB) tree [4], a highly efficient data structure for implementing the
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priority queue. In a vEB tree, the operation of each insertion, deletion and successor

can be performed in O(n log log n) time when the input sequence is a permutation of

{1, 2, . . . , n}. To facilitate this, we can first transform the input into a permutation

of {1, 2, . . . , n} using a sorting scheme. Subsequently, with the integration of the

vEB tree, the time complexity of the proposed LWSr algorithm can be reduced to

O(n log n+ rn log log n).

The LWSr problem offers valuable insights into price movements in the stock

market. Sometimes we may consider the price trend relationship between two or

more stocks. Thus, it is worthy to study the problem of the longest common wave

subsequence within r segments in the future. As another possible research direction,

in the LWSr problem, the length of each segment in the answer may be bounded

by an upper bound or a lower bound, or both bounds.
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algorithm for consecutive permutation pattern matching, Information Processing Let-
ters 113(12) (2013) 430–433.

[22] Y. Li, L. Zou, H. Zhang and D. Zhao, Longest increasing subsequence computation
over streaming sequences, 30(6) (2018) 1036–1049.

[23] S.-F. Lo, K.-T. Tseng, C.-B. Yang and K.-S. Huang, A diagonal-based algorithm for
the longest common increasing subsequence problem, Theoretical Computer Science
815 (2020) 69–78.

[24] U. Manber, Introduction to Algorithms: A Creative Approach, 1st edn. (Addison-
Wesley, Boston, USA, 1989).

[25] K. Rohde and P. Bork, A fast, sensitive pattern-matching approach for protein se-
quences, Bioinformatics 9(2) (1993) 183–189.

[26] C. Schensted, Longest increasing and decreasing subsequences, Canadian Journal of
Mathematics 13 (1961) 179–191.

[27] S. M. Stephens, J. Y. Chen, M. G. Davidson, S. Thomas and B. M.Trute, Oracle
database 10g: a platform for BLAST search and regular expression pattern matching
in life sciences, Nucleic Acids Research 21(11) (2005) 2596–2603.

[28] J. Thornton, M. Savvides and B. V. Kumar, A Bayesian approach to deformed pat-
tern matching of iris images, IEEE Transactions on Pattern Analysis and Machine
Intelligence 29(4) (2007) 596–606.
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